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Spin Dynamics

Particle trajectory governed by Lorentz force:
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(assuming γ changing slowly)

In a frame rotating with the particle velocity
vector, the equation for spin precession is:
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Here, the fields are those in the lab frame, whereas
the spin vector is in the particle’s rest frame.

For a pure vertical guide field in a circular
accelerator, the spin precesses Gγ times per
revolution.  Thus, the “spin tune” is νs = Gγ.
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Depolarizing Spin Resonances

Field perturbations cause undesired precession,
and when resonance conditions hold can
generate depolarization...

♦ Imperfection Resonances

◊ arise from sampling of error fields, fields
due to closed orbit errors, etc.

◊ Gγ = integer

♦ Intrinsic Resonances

◊ arise from sampling of focusing fields due
to finite beam emittance

◊ Gγ ± νy = integer;

νy = vertical betatron tune

These resonance conditions can be avoided
through the use of “Siberian Snakes.”
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Crossing Imperfection Resonances...

Consider an accelerator which has perfect vertical guide fields
except for a single small horizontal field error at one location
(s = 0, say) in the machine.  (This is equivalent to a very weak
partial Siberian Snake!)

By

Bx

v s = 0

The horizontal field produces a spin rotation about the x-axis of
amount ∆φ = 2πε = Gγ Bx L/(Bρ), where L is the longitudinal
extent of the field error; (Bρ)= p/e is the magnetic rigidity, the
momentum per unit charge.

Proceeding once around the accelerator, the spin is governed by
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The stable spin direction at s = 0 is found by finding the total
spin rotation angle and spin rotation axis using the resulting
matrix above.  To do so, we can use the infinitesimal rotation
generators
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from which the rotation axis of M can be found from
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We see immediately that if ε = 0, then n  = (0, ±1, 0)

and if Gγ = integer,  then n  = (±1, 0, 0).
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From the above, a small horizontal perturbing field changes the
stable spin direction as a function of energy.  At the field error,
the stable spin direction is vertical (or nearly so) far from
resonance.  As resonance (Gγ = integer) is approached, the
stable spin direction moves toward the horizontal plane.
Exactly on resonance, the stable spin direction is in the
horizontal plane and particle spin precesses about a horizontal
axis as intuitively expected.  Below is a plot of the stable spin
direction components as a function of Gγ for ε= 0.02...

ε 0.02 ∆φ ..2 π ε =∆φ 7.2 deg
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Adiabatic Spin Flip

For a process to be considered adiabatic, the slowly varying parameter of

the system, λ , must only change by a small amount during the

characteristic time scale, T0, of the periodic motion.  That is,

∆λ λ λ= <<d

dt
T0

For our case, we consider that the direction of the stable spin direction is

changing as we cross Gγ = k = integer:
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• Consider θ (= π/2 at Gγ = k) as the

slowly varying parameter

• Define  α = d(Gγ)/dθorbit   = ∆(Gγ)
per turn/2π = “acceleration rate”

• ny = cosθ, as shown previously, 

varies with Gγ

• T0 = Ts = 1/(frev ν s) =1/(frev ε) near

Gγ = k
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which reduces to...
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As Gγ → integer and since ε is small, the above reduces to a

condition for adiabatici ty ...

4
12

α
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So, as long as the change in Gγ per turn is much less than the square of

the resonance strength, then the motion will be adiabatic and the spin
precessions will closely follow the changing direction of the stable spin
vector.



MJS,    BNL  

Some examples of crossing a resonance of strength
ε = 0.015 (ε2 = 2.25x10-4) at various speeds...

α  = 0.53x10-4 α  = 1.6x10-4
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Remarks:

♦ Passing through the resonance, the stable spin direction
changes sign -- “spin flip.”

♦ So long as the resonance is passed adiabatically, the
particles will follow the stable spin direction and polarization
of the beam will be preserved.

♦ If the resonance is passed very quickly, then the stable spin
direction can change sign quickly enough that the spin simply
begins precessing about the new direction; again polarization
would be preserved.

♦ In intermediate cases, where either the crossing is neither
quick nor adiabatic, the spin precession of the particles will
not follow the change of the stable spin axis, and, because
there is an inherent spread in precession frequency of the
particles, beam depolarization will result.   The resulting
depolarization can be estimated using the Froissart-Stora
formula.
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  Froissart-Stora Formula

Let α  characterize the rate at which the resonance
is crossed:
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Consider a particle whose initial spin component
along the stable spin direction is Pi .  After crossing
the resonance,  its spin component Pf along the
resulting stable spin direction is given by the
Froissart-Stora formula:

P

P
ef

i

= −
−

2 1

2

2
π ε

α
| |

Comment on intrinsic resonances
and spin flippers:

The above discussion describes the case of a spin imperfection
resonance.  Intrinsic resonances, or artificially induced
resonances from “spin flippers,”  are essentially the same,
except that the horizontal field error is not constant.  After a
transformation into a reference frame that rotates at the
frequency of the horizontal field, these resonances can be
understood in the same way as imperfection resonances.
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Siberian Snakes and Partial Siberian Snakes...

Snake

  δ

2πGγ

Rotation of the spin vector upon passing once around
the accelerator is governed by
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The above rotation transformation can be
characterized by a rotation through an angle about a
particular axis.  The rotation angle will be 2π times
the “spin tune”and is derived from the trace of M.
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And so,
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From which

  TrM = 1 + 2 cos2πνs         (for any rotation matrix)

=  cosδ cos2πGγ + cosδ + cos2πGγ
= (1+cosδ)(1+cos2πGγ) − 1

or ,
2(1 + cos2πνs) = (1+cosδ)(1+cos2πGγ)

and thus,

cosπνs = cos(δ/2) cosπGγ

So, if δ = π (Full Siberian Snake), then   νs = 1/2,
if δ = 0 (No Snake!), then   νs = Gγ,
and otherwise (Partial Snake) , then

νs cannot be an integer!
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Plot Spin Tune versus Gγ for various values of δ...
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Stable Spin Direction

Just as there is a closed orbit in an accelerator, about which all
particles undergo betatron oscillations, there is a closed spin
orientation -- the stable spin direction -- which is a function of
the accelerator lattice, and about which all particles undergo
spin precession.

For a uniform vertical magnetic field, the stable spin direction
is simply vertical -- particles will precess about the vertical
direction with frequency given by the spin tune, Gγ for this case.

For the case of a single Siberian Snake as described above, the
stable spin orientation about the circumference of the
accelerator is illustrated here:

rotation angle
= 2πGγ,
modulo 2π

polarization
opposite the
snake will be
longitudinal

stable spin direction
precesses along the
particle orbit

Snake rotation axis
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To have transverse polarization opposite the Snake, say, one
could envision a Snake which rotates the spin by 180 degrees
about the radial transverse axis.  The spin tune would still be
1/2, but the stable spin direction opposite the Snake would be
radial:

rotation angle
= 2πGγ,
modulo 2π

polarization
opposite the
snake will be
radial

stable spin direction
precesses along the
particle orbit

Snake rotation axis

In the above two cases, the stable spin direction at any one
location in the accelerator (other than opposite the Snake)
depends upon the particle energy.  Introducing two Snakes into
the accelerator, with their rotation axes in the horizontal plane
and 90 degrees apart, the Snake condition can be met and at the
same time the stable spin direction will be vertical (up or down)
independent of energy...
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Two Snakes...
Snake rotation axis

(horizontal plane)

Snake rotation axis
(horizontal plane)

For this case, the spin matrix for the ring will be:
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with  trace = -1, yielding ν s= 1/2.

In RHIC, the axes of the two Snakes are 90 degrees apart, but
each ±45 degrees from the longitudinal axis.  Thus, the two
magnetic devices can be mechanically the same, operating at
the same strengths, but of opposite electrical polarities.
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